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A Navigation Solution Involving Changes to Course and Speed

George H� Kaplan
U�S� Naval Observatory

Abstract In a previous paper ���� an approach to celestial navigation was presented that
allows a vessel�s latitude� longitude� course� and speed to be simultaneously estimated� The
development assumed that the vessel was sailing a rhumb�line track at a constant speed�
In this paper� the approach is extended to cover the case where observations are taken
over several legs of a voyage� A single least�squares solution for all sailing parameters is
developed� The algorithm presented in this paper is not limited to celestial navigation� but
is applicable to any situation in which observations over several legs of a voyage are to be
combined in a single solution�

Key Words celestial navigation� celestial �x� motion of observer

Introduction

A development of celestial navigation was presented in ��� in which the motion of the observer was
included as an essential part of the basic mathematics� This allows celestial observations to be used
for the determination of not just latitude and longitude at a speci�c instant 	the traditional �x
� but
also course and speed�providing� of course� that a su�cient number of observations are available�
suitably distributed in azimuth and time� The development in ��� assumes that the observer�s vessel
is sailing a rhumb�line track at constant speed during the observations� For altitude sights made with
a hand�held sextant 	typical accuracy �� arcmin
� at least eight observations� spread over several
hours� are generally needed for reliable course and speed estimates� However� the time span over
which the observations need to be made would be less if their accuracy were better� For example� an
automated shipboard star tracker might make the necessary observations and obtain a good solution
in a matter of minutes�

The algorithm described in ��� has been implemented in software speci�cally designed for U�S�
Navy operational use� Navy ships are subject to changes in orders en route� and are often involved
in maneuvers� The software was therefore required to handle an arbitrary number of changes to
course and speed� Even on an uncomplicated port�to�port voyage� the great�circle route would
usually be approximated by a series of rhumb lines� The possibility that a celestial �x might involve
observations that span two or more voyage legs had to be considered�

In chart�based navigation� lines of position 	whether celestial or terrestrial
 can be easily ad�
vanced or retired over changes to course and speed 	see Bowditch ��� pp� ������
� The assumption
is simply made that the di�erence between a vessel�s true position and its estimated position�the
error in position�remains constant� in azimuth and distance� as the vessel moves� despite course
and speed changes� The procedure for advancing a line of position is thus no more complicated when
several voyage legs are involved than when there is only a single leg to consider� A popular mathe�
matical approach to celestial sight reduction ����� is a direct mathematical translation of chart�based
navigation� and it adopts the same assumption for combining observations spanning multiple legs�

However� as pointed out in ���� even when only one leg is involved� this assumption cannot be
rigorously true� and it is often not even approximately true� A vessel�s estimated course and speed
over bottom may be considerably in error due to components of current and wind not taken into
account� In practice� then� the error in position changes with time� The situation is complicated
further by changes to direction or speed� which modify the net force of the wind on the vessel� So
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not only is the basic assumption 	constant positional error
 dubious� but so is its �rst derivative
	constant rate of change of positional error
 when multiple legs are involved�

The development presented in ��� assumed at the outset that the observer�s estimated course and
speed are probably not accurate� so that the error in position is not constant� That algorithm allows
for a simultaneous solution for latitude� longitude� course� and speed� However� the algorithm
is based on the geometry of a single rhumb�line leg�that is� the course and speed are assumed
constant� This paper explores how the approach in ��� can be generalized for the multiple�leg case�
The multiple�leg algorithm presented here� although developed for rhumb�line tracks and celestial
navigation� is applicable to any kind of track and any set of observations in which a single observable
is a known function of the observer�s instantaneous latitude and longitude�

Single�Leg Solution

The algorithm presented in ��� is a least�squares solution for a vessel�s latitude and longitude
at a speci�c time� along with its course and speed 	assumed constant
� We assume that initially we
know the vessel�s track reasonably well� Errors of several degrees in position or course or several
knots in speed are routinely handled� and larger errors usually only require additional iterations
for convergence� What we are solving for are corrections to our a priori estimates of these four
quantities� The equation of condition for the least�squares solution� which is computed for each
observation� is�
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where a is the altitude intercept 	a � Ho�Hc
�
Ho is the observed altitude�
Hc is the computed altitude�
� is the estimated latitude for the time of observation�
� is the estimated longitude for the time of observation�
�� is the estimated latitude for the time of the �x�
�� is the estimated longitude for the time of the �x�
C is the course of the observer�s vessel�
S is the speed of the observer�s vessel�
f is the rhumb�line sailing formula for latitude� and
g is the rhumb�line sailing formula for longitude�

This equation expresses the altitude intercept a in terms of small corrections to the estimated
latitude� longitude� course� and speed� respectively denoted ���� ���� �C� and �S� These latter
four quantities are unknowns to be determined� and once their values are known� we can correct our
estimate of the vessel�s track� The corrections to latitude and longitude have � subscripts to denote
that they apply to the speci�c time� t�� for which the �x is desired� All angles� including latitude
and longitude� are expressed in radians�

The quantities within parentheses in equation 	�
 are the coe�cients of the unknowns� These
coe�cients� along with the altitude intercept a� must be numerically evaluated for each observation�

�



To do that� we need algebraic expressions for the partial derivatives� There are ten partial derivatives
that appear�
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These are obtained from three formulas� the equation for Hc as a function of � and �� the sailing
formula for latitude� represented by the function f � and the sailing formula for longitude� represented
by the function g� The sailing formulas are functions that together provide the position of the vessel
as a function of time t� they involve the parametersC � S� ��� and �� 	the sailing formulas are derived
in ���
� Algebraic expressions for all the partials needed above are given in the Appendix to ����

For a single�leg solution� the mathematical procedure can be summarized as follows� First� the
time t� for the �x is chosen� Initial estimates of the values of ��� ��� C� and S are made for time
t�� The sailing formulas f and g then allow the instantaneous latitude� �� and longitude� �� to be
computed for any other time t� For each observation� therefore� an estimate of � and � is made�
The sextant altitude� hs� is reduced to an observed altitude� Ho� in the usual way� An almanac or
ephemeris routine is then used to provide the celestial coordinates 	GHA and Dec
 of the observed
body� and Hc and a are computed for the observation� Using the expressions for the partials given
in ���� the coe�cients of the unknowns in equation 	�
 can be computed� To include the observation
in the least�squares solution� the coe�cients are added as a new row in the design matrix� and a
is added to the column vector of measurements� After all observations have been processed in this
way� the least�squares solution is computed� yielding values for ���� ���� �C� and �S� These are
then used to correct the original estimates of ��� ��� C� and S for time t�� The corrected values
of �� and �� de�ne the �x� The whole process can be reiterated if necessary� using the new values
of ��� ��� C � and S as the basis for the computations� Details� including a numerical example� are
given in ���� For a description of least�squares techniques� see any text on scienti�c data analysis�
for example� ������

Equation 	�
 can be applied beyond the case of celestial navigation if we simply generalize the
meanings of several variables� Ho and Hc can be regarded as the observed and computed values�
respectively� of any scalar quantity that can be measured while underway and that is a function of
the observer�s instantaneous latitude and longitude� For example� range to a known point would
be such a quantity� Then a � Ho�Hc becomes simply the �observed minus computed� residual of
this quantity� As long as we can compute a� �Hc���� and �Hc��� for each observation 	and the
geometry of the observations is not degenerate
� equation 	�
 applies� The development presented
below does not depend on particular meanings of Ho� Hc� a� or the partial derivatives �Hc��� and
�Hc����

General Considerations for Multiple�Leg Tracks

When we have observations spread over more than one leg� the conditional equation gains addi�
tional terms corresponding to the added degrees of freedom in the problem� That is� the geometry
of the problem becomes more complex and can be described only with additional parameters� some
of which we must solve for� We will consider a new voyage leg to begin with either a course change
or a speed change 	or both
 at a known time� We model these changes as instantaneous� and we
can ignore the �nite turning radius of the vessel if 	�
 no observations are made during the turn�
and 	
 the turning radius is short compared with the length of the straight portions of the vessel�s
track� In the most general case� each leg has both course and speed independent of the course and
speed on any other leg� 	This allows for the case where a change of either course or speed alters
the interaction of wind and current on the vessel and a�ects the other parameter�
 Just as in the
single�leg case� we assume that� initially� we know the vessel�s track reasonably well 	errors not
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exceeding a few degrees in position or course and a few knots in speed
� and that what we need to
solve for are corrections to our starting estimates of the relevant parameters�

To cover the multiple�leg case� some changes to our mathematical notation are necessary� We
will use subscripts to designate speci�c legs� The �rst leg will be denoted by subscript �� This leg
begins at time t�� when the vessel is at position 	�����
� sailing course C� at speed S�� The second
leg begins at time t� when the vessel is at position 	�����
� the new course and speed are C� and
S�� The third begins at time t�� and so on� We assume that we know the times tj exactly� and that
we start with reasonable estimates for the other quantities�

We have used the symbols f and g to represent the sailing formulas for rhumb�line tracks� which
respectively provide the latitude and longitude of the vessel as a function of time� For the multiple�
leg case� we must use the symbols f� and g� to represent the sailing formulas to be used for leg �� f�
and g� to represent the sailing formulas to be used for leg � etc� The algebraic form of the sailing
formulas is� of course� the same for all legs� it is just the parameter values used in the formulas
that are di�erent for each leg� We will continue to use the symbols f and g 	without subscripts
 to
represent the generic form of the sailing formulas� The values of �ve parameters in these formulas
e�ectively de�ne the functions fj and gj for each leg j� The parameters are the time tj at which the
leg begins� the latitude �j and longitude �j of the vessel at time tj � the course Cj � and the speed
Sj � For each leg j we have

for tj � t � tj��

�
�	t
 � fj � f 	t� tj � �j � �j � Cj � Sj


�	t
 � gj � g 	t� tj � �j � �j � Cj � Sj

	


The initial point of the leg 	position 	�j��j
 at time tj
 thus serves as a reference point for the sailing
formulas for the leg� We have made the reference point of each leg to be the initial point� but that
is a requirement only for the second and succeeding legs in a multiple�leg case� for the �rst 	or only

leg� the reference point can be anywhere along the leg�

It should be noted that the functional dependence of the two sailing formulas on the parameters
shown in equation 	
 is implicit� the set of parameters used explicitly in the two formulas is
somewhat di�erent� As presented in ��� and ���� both formulas contain auxiliary variables that need
to be expanded before the dependence of these formulas on the parameter set shown above becomes
evident�

The naive approach to the multiple�leg problem would be to simply take equation 	�
 and
generalize it to cover N legs� using the notation just introduced�
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where the subscript k denotes the leg on which the observation was taken� aik represents the altitude
intercept for the ith observation on leg k� and the summation is over all N legs in the problem� There
are �N free parameters to be determined� ��j� ��j � �Cj� and �Sj for j � � through N� The partial
derivatives of the sailing formulas that appear in equation 	�
 contain subscripts� The subscript in
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the �numerator�� k� represents the leg number of the observation being processed and the subscript
in the �denominator�� j� represents the leg number of a particular unknown�

In this construction of the problem� each leg is independent of the others� and there is no
requirement that the legs be continuous� With independent legs� only observations taken on a
particular leg contribute to the parameters for that leg� That is because the sailing formulas for a
particular leg depend only on parameters relating to that leg� and therefore the partial derivatives
of the sailing formulas are zero if j �� k� Therefore� in equation 	�
� as j cycles from � to N� the
coe�cients of all the unknowns are zero except when j � k� so that an observation has no e�ect
except on parameters relating to its own leg� When j � k� the partials are evaluated from the single�
leg formulas given in ���� What we have done� therefore� is set up a single least�squares solution
for a problem that could be handled as N individual least�squares solutions� one for each leg� The
values of the unknowns that we solve for will be the same regardless of which approach is taken�

Of course� the idea that a multiple�leg voyage consists of a series of independent legs does not
correspond to the real problem� The courses and speeds may be independent� but each leg must be
continuous with its neighbors� Because we are modeling each leg change as instantaneous� continuity
is required only in position� not in motion� The requirement that adjacent legs be continuous de�nes
a set of constraints on the solution� and constraints always reduce the number of free parameters in
a problem� Formal methods have been developed to deal with constrained least�squares problems�
but the multiple�leg problem can be attacked more easily� In the next section� we will abandon
equation 	�
 and take another approach to the problem�

Algorithm for Multiple�Leg Tracks

A viable solution to the real multiple�leg problem must explicitly or implicitly deal with the
requirement of continuity at the leg intersections� The mathematical condition is that� for all legs
beyond the �rst� the point at the start of leg j must be identical to that at the end of leg j � �� At
the start of leg j � �� the vessel�s coordinates 	�j ��j
 are therefore not free parameters� Only on
the �rst leg are the coordinates of the reference point free parameters� Given the location of that
reference point� the time of each course or speed change� and the course and speed values on each
leg� the vessel�s track is completely determined� Since all the times are known� for N legs� there are
N� free parameters in the problem 	rather than �N� as in equation 	�
 above
� We start with
estimates of their values and seek to correct those estimates� The two quantities �� and ��� which
de�ne the position of the vessel at the reference point of the �rst leg� represent the �x� The other
free parameters of the problem are the course and speed along each leg� The conditional equation
for this case must therefore take the form

aik �
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where the notation is the same as for equation 	�
� This equation must be evaluated numerically for
each observation� and the observations are taken in chronological order so that all the observations
from a given voyage leg k are processed before any observations from the next leg�

In equation 	�
� as in equations 	�
 and 	�
� the coe�cients of the unknowns are composed of
linear combinations of partial derivatives� The issue is how to evaluate these partial derivatives as
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the observations from each leg are processed� These partial derivatives are of two types� The partials
of the observable Hc with respect to the instantaneous position of the vessel 	�Hc��� and �Hc���

are straightforward to evaluate� if Hc is celestial altitude� the expressions can be taken from ���� The
partials of the sailing formulas fk and gk are more di�cult to deal with� because they describe the
relationship between the ship�s instantaneous position and all the free parameters in the problem
	�� and �� as well as Cj and Sj for all j
�

The sailing formula partials contain subscripts� k in the �numerator� represents the leg number
of the current observation and j in the �denominator� represents the leg number of a particular
unknown� 	In the top line of equation 	�
� j � ��
 Within each evaluation of equation 	�
 	each
observation
� k remains �xed but j runs over all the legs in the problem� In evaluating the sailing�
formula partials� we therefore have three cases to consider� j � k� j � k� and j � k� Keeping in
mind the meanings of j and k� we recognize that for j � k� the sailing formula partials must be
zero� re�ecting the fact that the ship�s current computed position cannot depend on the parameters
of future legs� For j � k� the partials must be the same as in the single�leg case� and the expressions
from ��� can be directly used� The j � k case is the most complicated� because these partials
must re�ect the fact that the ship�s computed position does depend on the parameters of past legs�
propagated through the constraints at the leg intersections� Most of Appendix A deals with this
case�

Thus� the net e�ect of the partials of the sailing formulas on equation 	�
 is that each obser�
vation contributes to determining not just the course and speed on its own leg k but also those
of all preceding legs� However� the future is indeterminate� and observations cannot provide any
information on the unknowns relating to legs that have not yet occurred 	they may not occur
� All
observations contribute to determining the coordinates of the reference point on the �rst leg� which
serves as the �x for the multiple�leg problem�

In Appendix A� an algorithm for the evaluation of the sailing formulas partials that appear in
equation 	�
 is presented� The algorithm is quite straightforward in that all that is done for the j � k
case is to implicitly fold the continuity constraints into the sailing formulas� the functions fk and gk
for leg k� Then� new expressions for the partial derivatives of fk and gk are immediately obtained
using the chain rule� These expressions amount to recurrence relations� Partials computed for each
leg are built on partials computed for previous legs 	a process that follows logically from the nature
of the problem
� Some care with mathematical bookkeeping is necessary� However� the advantage
of this scheme is that� if the observations are processed in chronological order� no calculations are
required beyond those needed for the single�leg case� except trivial multiplications and additions�
No changes are required in the least�squares procedure itself� Appendix A describes the procedure
in detail� Because it represents a modi�cation to the single�leg case� the algorithm is not di�cult to
implement in computer code�

In the development of the multiple�leg case presented here� the �x is always on the �rst leg� In
practice� what is of interest is not really the vessel�s position on the �rst leg� but the last� which is
the leg that the vessel is currently sailing� It may seem as if the problem should be reversed� In
fact� we can do just that�the problem is symmetric in time and the vessel can� mathematically�
be sailed backwards as well as forwards� Therefore� what we have been calling the ��rst leg� can
actually be the last and what we called the �initial point� of each leg can actually be the �nal
point� The problem has been described in a manner that keeps the development and terminology
as straightforward as possible� This allows us to visualize the vessel as moving forward in time� to
discuss causes and e�ects in a natural order� and to refer to leg j�� as the �subsequent� or �next�
leg� However� when the algorithm presented here is used for real problems� the procedure can be
implemented in a time�reversed fashion to provide information of practical use�
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Sample Calculation

A numerical example using this algorithm is presented below� A set of � arti�cial sextant
observations 	hs values
� spanning � legs of a hypothetical voyage 	� observations per leg
� was
reduced using the algorithm described in this paper� The solution yielded a position �x for a single
speci�ed time in the �nal leg and course and speed estimates for all legs� The arti�cial observations
were generated by a computer program that numerically integrated a hypothetical ship�s course�
consisting of � rhumb�line tracks� as shown in Table � 	north latitudes and east longitudes are
positive
�

Table ��Ship�s Track Used in Sample Calculation

Start of Leg A

Date� �� Aug ����
Time� �������� UTC
Latitude� ��������

Longitude� ��������

Course� ������

Speed� ��� kn

Start of Leg B

Date� �� Aug ����
Time� �������� UTC
Latitude� �������

Longitude� ��������

Course� ������

Speed� ����� kn

Start of Leg C

Date� �� Aug ����
Time� ������� UTC
Latitude� ��������

Longitude� ��������

Course� ������

Speed� ����� kn

The data in Table �� and any positions derived from them� constitute �truth� for this case� The
latitude and longitude listed for the beginning of legs B and C were computed from the data for
the previous leg� that is� the legs meet at these points and the changes to course and speed were
assumed to be instantaneous� Astronomical positions of the celestial bodies chosen were computed
that are consistent with those in the ���� Nautical Almanac and transformed to local altitudes�
Atmospheric refraction was included but the height of eye was considered to be zero� and the time
scale UT� was assumed to be identical to UTC 	that is� DUT��UT��UTC��
� Random errors with
a ��� arcmin standard deviation were added to the calculated hs values� The arti�cial observations�
for ����� August ���� 	UTC
� are given in Table �

Table ��Arti�cial Observations for Sample Calculation

Leg A � �� Aug

UTC Object hs
�

���������� Sun �����
�������� Sun ������
�������� Arcturus �����
��������� Jupiter �����

Leg B � �� Aug

UTC Object hs
�

��������� Moon ������
������� Moon ������
��������� Markab ������
�������� Sun ������

Leg C � �� Aug

UTC Object hs
�

�������� Alpheratz ������
������� Rasalhague ������
�������� Kochab ������
������� Alpheratz ����

All of the Sun and Moon observations apply to the lower limb� The star and planet observations
represent twilight observations� the twoMoon observations represent night observations� The Moon�s
phase was ��� 	age �� days
�

Once computed and stored in a �le� these arti�cial observations were used as input to a separate
computer program that implemented the algorithm described in this paper� This second program
was given the incorrect data on the ship�s position and motion listed in Table ��
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Table ��Incorrect Data on Ship�s Track

Supplied to Multiple�Leg Algorithm

Start of Leg A

Date� �� Aug ����
Time� �������� UTC
Latitude� ��������

Longitude� ��������

Course� �����

Speed� ����� kn

Start of Leg B

Date� �� Aug ����
Time� �������� UTC
Latitude� ��������

Longitude� ��������

Course� ������

Speed� ����� kn

Start of Leg C

Date� �� Aug ����
Time� ������� UTC
Latitude� ��������

Longitude� �������

Course� ������

Speed� ���� kn

The dates and times shown in Table � are the same as in Table �� but the course and speed values�
as well as the position of the �rst point of leg A� are considerably di�erent� Just as in Table �� the
latitude and longitude listed in Table � for the beginning of legs B and C are computed from the
data listed for the previous leg� Clearly� this track 	Table �
 is a rather poor approximation to the
true track 	Table �
� The test of the algorithm is whether� given only the � observations 	Table 
�
it can determine the true track of the vessel� limited only by the error in the observations� The date
and time for the desired �x were chosen to be � Sep ���� at �������� UTC� which is on leg C� ���
hours after the last observation� In addition to the latitude and longitude for that time� course and
speed for all � legs were to be determined� Based on the incorrect data on the ship�s track it was
given� the second program computed the estimated latitude and longitude for the time of the �x to
be 	��������� �������
� It also computed the data in Table � for the � observations�

Table ��Estimates of Sight�Reduction Quantities for Observations

Leg UTC Est � Est � Object Ho Hc a
� � � � �

A ���������� ������� ������� Sun ����� ������ �����
A �������� ������ ������� Sun ������ ������ ������
A �������� ������� ������� Arcturus ������ ����� �����
A ��������� ������� ������ Jupiter ����� ���� �����
B ��������� ������ ������� Moon ������ ������ �����
B ������� ����� ������ Moon ����� ����� �����
B ��������� ������� ������� Markab ������ ������ �����
B �������� ������ ������ Sun ������ ������ �����
C �������� ������� ������� Alpheratz ������ ���� �����
C ������� ������� ������� Rasalhague ������ ����� �����
C �������� ������ ������� Kochab ������ ������ �����
C ������� ������� ������� Alpheratz ������ ����� �����

In Table �� the altitude intercept� a� is Ho�Hc and positive values indicate �toward�� The Ho and
Hc values are topocentric and� for the Sun and Moon� they refer to the lower limb� The large a
values are a result of the poor data on the ship�s track that the program was given� that we hope to
correct�

As described previously� the algorithm described in this paper will usually be implemented in
a time�reversed sense� The program followed this strategy� working backwards through the obser�
vations and e�ectively treating leg C� containing the �x� as the ��rst� leg� In recognition of this
strategy� and in order to maintain consistency with equation 	�
� the following notation will therefore

�



be used�
Leg A� Leg �� Course C�� Speed S�

Leg B� Leg � Course C�� Speed S�

Leg C� Leg �� Course C�� Speed S�� Fix Coordinates ��� ��

As it processed each observation� the program computed the values of the coe�cients of all the
unknowns in equation 	�
� It sent these coe�cient values� along with the value of a� to a standard
least�squares routine� All the observations were given equal weight� After all � observations had
been processed in this way� the least�squares solution was formed� The results are given in Table ��
which lists the corrections to the parameters describing the ship�s track�

Table 	�Least�Squares Solution

Parameter No
 Obs
 Value

��� � ������� ����� �

��� � ������� ����� �

�C� � ���� � ���� �

�S� � ���� � ��� kn
�C� � ����� � ���� �

�S� � ��� � ��� kn
�C� � ���� � ���� �

�S� � ���� � ��� kn

The second column in Table � indicates the number of observations contributing to each parameter�
Table � shows rather large corrections to the parameter values� as we expect from the crudeness of
the track data that the program used� The mean error of unit weight of the solution was computed
to be ��� arcmin� If we add the parameter values from Table � to the estimated 	incorrect
 data on
the ship�s track� we obtain the �nal results of the entire process� summarized in Table ��

Table ��Results of Solution for Ship�s Track

Truth Solution Error

�� ������ ������� �����
�� ������� ������� �����
C� ����� ���� ����
S� ����� ����� ����
C� ����� ����� �����
S� ����� ���� ����
C� ����� ���� �����
S� ��� ���� �����

The units used in Table � are degrees and knots� as in the previous tables� �Error� simply refers to
the di�erence solution�truth� Obviously a great improvement in the data on the ship�s track was
made� Of course� in a real situation� �Truth� would not be known�the question at this point would
be whether another iteration of entire procedure would be advisable� using the updated values of
the parameters describing the ship�s track given in Table �� In fact� the program did perform two
iterations of the algorithm� and the results given in Tables � and � re�ect the sum of the corrections
obtained from the two iterations� If the solution is reliable� the iterations will converge rapidly� that
is� the parameter corrections from a second or third iteration will all be much smaller than those
from the previous iteration� That was the case here�

	



The algorithm did recover the ship�s true track� although the �x coordinates are perhaps not as
accurate as we might desire� The error in the �x position is �� nmi� even though the observations
had a scatter of ��� arcmin� This example is adversely a�ected by the small number of observations
involved�there are only ��

�
times as many observations as there are parameters� leaving only �

degrees of freedom� The parameter correlation matrix from the solution showed a ���� correlation
between ��� and �C�� indicating that the geometry of the observations does not allow a clean
separation of the e�ects of these errors� Such problems are not uncommon in cases with so few
observations� Generally� at least a half�dozen observations on each leg� well spread out in time�
should be used� In one scenario tested� adding just � more observations to this example reduced the
error in the �x to less than � nmi� The extra observations not only doubled the number of degrees
of freedom in the problem but also improved its geometry�

In any event� the multiple�leg algorithm described in this paper may provide the best answers
attainable for the ��observation case we have been considering� For example� if we try something
more conventional� and process only the observations in leg � 	leg C
� we obtain the results in
Table ��

Table ��Results of Solution for Leg � Only

Truth Solution Error

�� ������ ������� ������
�� ������� ������� ������

�� ������ ������ ����
�� ������� ������� �����
C� ����� ����� �����
S� ����� ����� �����

Two solutions for leg � 	leg C
 are given in Table �� above the line� only the latitude and longitude
of the �x have been solved for� below the line� course and speed values have also been determined
	the second solution has no degrees of freedom
� Clearly� neither is satisfactory�the errors in the �x
position are ��� and ���� nmi� respectively� The di�culty in treating leg � alone is that the obser�
vations represent a group of sights taken within a ��hour period during evening twilight� Since the
course and speed are not well known� and cannot be accurately determined using these observations�
the extrapolation to the time of the �x fails� In this case� the use of observations from the previous
legs can add substantial information to the process� providing a reasonable determination of the
course and speed values for leg � 	the �nal leg
� and allowing a relatively accurate extrapolation of
the ship�s position forward�

What would happen to our ��leg� ��observation case if the observations were substantially
better 	or worse
 than those listed in Table  We can easily change the random scatter in the
arti�cial observations and run through the entire procedure again� The results of this experiment
are summarized in Table �� the body of which shows the error of each parameter 	solution�truth
�
in the units we have been using� as a function of observational scatter�

�




Table �Parameter Accuracy vs
 Observational Accuracy

� Observational Uncertainty �

� ������ ���� ����� �����

�� ������ ������ ������ ����� ������
�� ������ ������ ������ ����� ������
C� ���� ���� ����� ���� �����
S� ���� ���� ����� ���� �����
C� ���� ���� ���� ����� ����
S� ���� ����� ����� ���� �����
C� ���� ���� ����� ����� �����
S� ���� ����� ����� ����� ����

There are no surprises in Table �� it simply indicates that the errors in the parameters solved for
are directly proportional to the scatter in the observations�

Use of the Multiple�Leg Algorithm

The algorithm outlined above and detailed in Appendix A has been implemented in software
for celestial navigation� It was produced by the U�S� Naval Observatory for Navy shipboard use ����
This software is currently operational in the �eet� The algorithm has been extensively tested using
arti�cial observations generated by independent programs� where �truth� can be known absolutely
and controlled� The algorithm is accurate and remarkably robust across a wide variety of voyage
track scenarios�

The algorithm cannot� however� be applied blindly� and the distribution of the observations in
time and azimuth should be considered before proceeding� As the sample calculation above shows�
it is advisable for there to be at least a half�dozen observations on each leg� However� valid solutions
can sometimes be formed with fewer observations� or even when one or more legs are �empty�� The
example above also shows the utility of the algorithm in establishing a mathematical linkage between
the legs that allows observations from subsequent 	previous
 legs to contribute to the solution on the
�rst 	last
 leg�which includes the adjustment to the �x coordinates� It is di�cult to provide hard
and fast a priori rules for the algorithm�s application that apply in all cases� As in any least�squares
procedure� the parameter correlation matrix 	obtained from the variance�covariance matrix
 from
the solution should be examined to determine whether the solution is reliable� When that is not
the case� it may be inadvisable to use the algorithm in its fullest generality as presented above�
course and speed corrections for certain legs may be excluded� In such cases� in the summation
term of equation 	�
� the j for any leg can simply be skipped over and the corresponding �Cj

and �Sj not included in the solution� If the distribution of observations is very sparse� the entire
summation term of equation 	�
 can be omitted� and the solution con�ned to ��� and ���� that is�
only corrections to the �x coordinates are computed� Clearly� however� the algorithm is most useful�
and reliable� when there is a good distribution of observations on each leg� In the case of celestial
navigation� an automated observing system might be required to provide the number and accuracy
of the observations needed�

The algorithm is quite general� As previously noted� equation 	�
 is not limited to celestial
observations�Hc can represent any observable which is a known function of latitude and longitude�
The only requirement is that the functions f and g provide the coordinates of the vessel as a function
of time and the latitude� longitude� course� and speed at the beginning of the leg�

��



The algorithm might be useful even when a ship is nominally holding a �xed course and speed�
If signi�cant changes in current or wind occur� a single rhumb line may not adequately model the
ship�s track over bottom� In such cases� the ship�s motion might be approximated by a series of
rhumb�line legs� and the algorithm given in this paper would then be applicable�

Finally� in ���� the navigation problem for vessels on the surface of the Earth was described
as being analogous to the orbit determination problem for bodies in the solar system� That paper
derived the conditional equation for the single�leg navigation problem� reproduced here as equa�
tion 	�
� from considerations similar to those used by astronomers for the orbit problem� It may
seem as if the multiple�leg navigation problem addressed in this paper has no analog in orbit theory�
but that is not so� Spacecraft trajectories are adjusted by rocket �rings� and the orbits of asteroids�
comets� and spacecraft are perturbed by close approaches to massive bodies� In most of these cases
the agent of change 	a rocket burn or close gravitational encounter
 is a transient phenomenon� An
approximate treatment of such a problem� adequate for many purposes� would be to consider the
�before� and �after� trajectories to meet at a point in space where the motion of the body instanta�
neously changes� Thus� even when orbits in the solar system are considered� we have situations that
are quite similar to the multiple�leg navigation case� The strategy for dealing with the multiple�leg
navigation problem described in this paper could be generalized to the orbit�determination problem
as well�

Conclusion

The running �x�the determination of position at sea using observations taken over extended
time spans�is a common navigational problem� Traditional chart�based techniques advance or
retire lines of position to a common time� The technique works best when the vessel�s motion is
constant� but it is also applied across changes to course or speed� that is� to multiple�leg tracks� A
commonly used mathematical development of celestial navigation mimics the chart�based scheme�
The weakness of this approach to the running��x problem is that it is based on the assumption that
the di�erence between a vessel�s estimated and true positions remains constant in two dimensions
as the ship moves� The notion that a ship�s positional error is constant is unlikely to be true� even
approximately� except over very short periods� and any change to course or speed only complicates
the situation�

An algorithm has been presented in this paper that allows celestial or other observations made
over several voyage legs to be combined into a single solution for all relevant sailing parameters� the
latitude and longitude of one point on the track and the course and speed along each leg� In this
algorithm� the error in position is assumed to change� and its rate of change is assumed to be di�erent
along each leg� The algorithm is conceptually simple� uses ordinary least�squares procedures� makes
e�cient use of the available observations� and is relatively easy to implement in computer code�
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Appendix A

Evaluating the Partial Derivatives of the Sailing Formulas in the Multiple�Leg Case

Equation 	�
 in the main part of the paper is the conditional equation for a least�squares
solution for the unknowns of the multiple�leg navigation problem� To use it� we need to be able to
numerically evaluate the quantities within the parentheses in the equation� which are the coe�cients
of the unknowns� Equation 	�
 is evaluated for each observation� It is advantageous to take the
observations in chronological order� so that all observations on a given leg are processed before any
observations on the next leg�

The coe�cients of the unknowns in equation 	�
 consist of linear combinations of various partial
derivatives� As mentioned in the main text� the partials that appear are either partials of the
observable Hc or partials of the sailing formulas f and g� For celestial observations� expressions
for the partial derivatives �Hc��� and �Hc��� are given in ��� and will not be discussed further
here� For the multiple�leg case� the quantities that need special attention are the partial derivatives
of the sailing formulas� for example� �fk���� or �gk��Cj � These appear in equation 	�
 in the
generic form �yk��xj � where y represents either the function f or g� and x represents any of the four
parameters �� �� C� or S� We will refer to these partial derivatives simply as the �sailing partials��
The subscript k represents the leg number of the current observation� while j represents the leg
number of a particular unknown� In each evaluation of equation 	�
� k remains �xed but j runs over
all legs in the problem�

There are three fundamental points to be noted in evaluating equation 	�
�

	�
 Each partial derivative that appears in equation 	�
 is numerically evaluated for the time
and estimated position of the observation being processed� using the current best estimates of
the values of the parameters of the problem�

	
 When the subscripts in the �numerator� and �denominator� of the sailing partials are
the same� that is� when j � k� the partials correspond to those of the single�leg case� The
expressions from the appendix to ��� can be used directly� although the notation is somewhat
di�erent� For example� �g����� is evaluated using the equation from ��� for �g����� applied to
leg �

	�
 The summation in the second line of equation 	�
 e�ectively ends at j � k� since all the
sailing partials are zero when j � k� for reasons stated in the main body of the paper�

The major issue addressed in this appendix is the evaluation of the sailing partials in equation 	�

when j � k� These occur in the computation of the coe�cients of unknowns relating to legs preceding
the one on which the observation was taken� To facilitate the computation of these partials� we will
add an arti�cial observation at the end of each leg� that is� for leg j the added computation point is
at t � tj��� We compute all the sailing partials that appear in equation 	�
 for this point just as if
it were an actual observation at the very end of the leg� The values of these partials are stored for
future reference� This point is not included in the solution since it is not an actual observation 	we
have no value for aik
� The arti�cial observation is processed this way for each leg except the �nal
one� where it is super�uous� The utility of these arti�cial observations will soon become evident�

First Leg� The sailing formulas for the �rst leg� which apply to times t where t� � t � t�� can
be represented as

�	t
 � f� � f 	t� t�� ��� ��� C�� S�


�	t
 � g� � g 	t� t�� ��� ��� C�� S�

	A�


��



For observations on the �rst leg� where k � �� we only have to deal with j � � since the
sailing partials are all zero for j � k� Since the only subscript we encounter in either �numerators�
or �denominators� is �� all the observations on the �rst leg are processed just as in the single�leg
problem�

Second Leg� The sailing formulas for the second leg� which apply to times t where t� � t � t��
are�

�	t
 � f� � f 	t� t�� ��� ��� C�� S�


�	t
 � g� � g 	t� t�� ��� ��� C�� S�

	A


However� there is a constraint on the point 	��� ��
� which is the start of leg � it is also the end of
leg �� That is� at t � t�� we have f� � f� and g� � g�� More explicitly�

�� � �	t�
 � f�
t�

� f�
t�

� f 	t� � t�� ��� ��� C�� S�


�� � �	t�
 � g�
t�

� g�
t�

� g 	t� � t�� ��� ��� C�� S�

	A�


where the vertical bar means �evaluated at��

For observations on the second leg� where k � � we have to deal with j � � and � the sailing
partials are all zero for j � k�

Partials for ��� and ���� To obtain expressions for the sailing partials needed in the �rst line
of equation 	�
� we substitute the expressions for �� and �� from the right side of equations 	A�

into equations 	A
� then di�erentiate using the generalized chain rule� The results are�
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	A�


On the right sides of equations 	A�
� the partials of f� and g� 	�f������ etc�� the �rst factors in each
term
 are evaluated for the particular time of the observation being processed� and are computed
from the single�leg formulas just as if leg  were the only leg in the problem� However� the partials of
f� and g� 	�f������ etc�� the second factors in each term
 are evaluated for time t � t� 	as required
by equation 	A�

� so their values have already been computed�they are the partials computed for
the arti�cial observation at the end of leg ��

Partials for�C� and �S�� Similarly� we di�erentiate equations 	A
� with �� and �� substituted
from equations 	A�
� to obtain the sailing partials needed for the second line of equation 	�
 when
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j � ��
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The partials of f� and g� on the right side of equation 	A�
 are the same as those on the right side
of equation 	A�
� The partials of f� and g� are evaluated for time t � t�� the end point of leg �� so
their values have also been previously computed�

Partials for �C� and �S�� For the second line of equation 	�
 when j � � we encounter only
partials where the �numerator� and �denominator� have the same subscript 	i�e�� j � k � 
� These
are evaluated for each observation from leg  just as if it were a single�leg case�

Third Leg� The sailing formulas in latitude and longitude for leg � can be represented as

�	t
 � f� � f 	t� t�� ��� ��� C�� S�


�	t
 � g� � g 	t� t�� ��� ��� C�� S�

	A�


We have the usual constraint on the point 	��� ��
� which is the start of leg �� but also the end of
leg �

�� � �	t�
 � f�
t�

� f�
t�

� f 	t� � t�� ��� ��� C�� S�


�� � �	t�
 � g�
t�

� g�
t�

� g 	t� � t�� ��� ��� C�� S�

	A�


For observations on the third leg� where k � �� we have to deal with j � �� � and ��

Partials for ��� and ���� The sailing partials needed for the �rst line of equation 	�
 are
obtained by di�erentiating equations 	A�
� with �� and �� substituted from equations 	A�
� With
the help of the chain rule� the following results are obtained�
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Here� the partials of f� and g� on the right side are evaluated for the particular time of the observation
being processed� from the single�leg formulas applied to leg �� The partials of f� and g� are evaluated

��



for time t � t� 	a requirement of equation 	A�

� so we already have their values�they were
computed for the arti�cial observation at the end of leg  when equation 	A�
 was applied�

Partials for �C� and �S�� The sailing partials needed for the second line of equation 	�
 when
j � � are obtained by the same procedure as used for equations 	A�
�
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The partials of f� and g� on the right are the same as those in equation 	A�
� The partials of f�
and g� are evaluated for time t � t�� the end point of leg � and their values were computed when
equation 	A�
 was evaluated for the arti�cial observation at the end of leg �

Partials for �C� and �S�� The sailing partials used in the second line of equation 	�
 when
j �  are�
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The partials of f� and g� on the right side of equation 	A��
 are the same as those in equations 	A�

and 	A�
� The partials of f� and g� are evaluated for time t � t�� the end point of leg � and their
values are also available from previous computation�

Partials for �C� and �S�� For the second line of equation 	�
 when j � �� all the sailing
partials have the same subscript� �� in their �numerator� and �denominator�� These are evaluated
for the observation using the single�leg formulas applied to leg ��

General Strategy� The pattern should be obvious by now� The partials of the sailing formulas
that appear in equation 	�
 have the general form �yk��xj � where y represents either the function
f or g� x represents any of the four parameters �� �� C� or S� k is the number of the current
observation�s leg� and j is an index that represents any of the N legs in the problem� When j � k
the partial is zero� The non�zero partials are of two types� In the �rst type� j � k� that is� the
partial has the form �yk��xk � These partials are computed from the single�leg formulas given in
���� applied to leg k� and are evaluated for the time of the observation being processed� The second
type of partial has j � k� and we have seen that these partials are expanded as follows�
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Looking at the two terms on right side of equation 	A��
� we see that the �rst factor in each is a
partial of the �rst type� which we know how to evaluate� For a given observation� these �rst factors
are used repeatedly� The second factor is a partial that must be evaluated for time t � tk� which is
the instant at the end of leg k�� 	the previous leg
� Since we have inserted an arti�cial observation
at the end of each leg� these partials have already been computed� For each sailing�formula partial
that appears in equation 	�
� expanded as above� these second factors remain the same for all
observations within a leg� It should be noted that some of the partials used in equation 	A��
 are
zero if the rhumb�line sailing formulas from ��� are used� 	For example� latitude is not a function of
longitude� so �fk���k � ��
 The algorithm has been presented in its fullest generality so that it is
not limited to a speci�c set of sailing formulas�

This algorithm can be considered an extension of the one used for the single�leg case� It requires
no new mathematics beyond trivial multiplications and additions� Equation 	A��
 amounts to a
recurrence relation that builds the sailing partials for the j � k case from those already computed for
the previous leg� together with partials computed using the single�leg formulas applied to the current
leg� No changes in the least�squares procedure are needed beyond providing for the extra unknown
parameters that the multiple�leg case requires� Using this algorithm� a computer implementation of
the single�leg case can be modi�ed to handle the multiple�leg case with relatively little di�culty�
the additional code is mostly involved with bookkeeping� Some new arrays are required for storage
of the sailing partials computed for the arti�cial observations at the end of each leg� However� the
storage required is small since in practice the number of legs that would be included in a solution
would probably never exceed about �ve�

As mentioned in the main text� for practical applications� the algorithm should in most cases be
implemented in a time�reversed sense� That is� leg � should be the most recent 	latest
 leg and leg N
should be the �rst 	earliest
 leg� That allows the �x 	�����
� which can be anywhere on leg �� to
represent the current position of the observer�s vessel if desired� In a time�reversed implementation�
the observations are taken in reverse chronological order� Each of the arti�cial observations must
then be added at the beginning of its leg� so that it is the last computational point encountered on
the leg as the observations are processed�

��



Appendix B

Alternative Multiple�Leg Solution Algorithms

What alternative algorithms are available for the multiple�leg navigational solution As men�
tioned in the main part of the paper� the multiple�leg case is an example of a constrained least�squares
problem� Least�squares theory allows constraint equations�known relationships among the param�
eters being solved for�to be included as part of the solution 	see� for example� ���� Chapter �
�
In principle� this theory would allow us to use equation 	�
� with four unknown parameters per
leg� in combination with linearized versions of constraint equations such as 	A�
 and 	A�
 in Ap�
pendix A� However� this approach is considerably more di�cult computationally� involving� among
other things� another matrix inversion� Generally� �canned� least�squares packages do not provide
for this type of solution 	although at least one� IMSL ����� does
�

Another approach� discussed in ���� uses the constraint equations to eliminate the dependent
	redundant
 parameters in the problem� That is� the constraints are used to solve for a set of
independent 	free
 parameters �up front�� and all the relevant equations are rewritten in terms
of this set of independent unknowns� The algorithm outlined above is actually a variant of this
approach� In our case� the coordinates of the starting points of legs  through N are the dependent
parameters� The algorithm does not explicitly solve for and eliminate these parameters�rather� the
algorithm works entirely with the derivatives of the parameters� and uses the chain rule to e�ectively
remove the starting point coordinates of legs  through N from the solution� The solution� therefore�
involves only a set of independent parameters�

The direct elimination of the dependent parameters is di�cult with the sailing formulas used
above but the method can be illustrated if the vessel�s track is approximated by piecewise polyno�
mials� 	Spline theory is not really applicable� since continuity in derivatives is not required at the
junction points�
 For short rhumb lines� latitude can be represented as a linear function of time�
although longitude requires a quadratic polynomial 	great circles would require quadratics in both
coordinates
� Suppose we look at the equations for longitude for a three�leg problem�
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These equations contain nine parameters� ��� #��� $��� ��� #��� $��� ��� #��� and $��� However� two of
these� �� and ��� the longitudes at the beginning of legs  and �� are dependent parameters� They
can be related to the other parameters by the usual constraints� which provide for continuity in
position at the leg intersections� For this case� the constraints� analogous to equations 	A�
 and
	A�
 in Appendix A� are g� � g� at t � t� and g� � g� at t � t�� These conditions allow us to
eliminate �� and �� from equations 	B�
� yielding
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Equations 	B
 are the new sailing formulas for longitude to be used for the three legs� which
involve no dependent parameters� The latitude equations 	which have no quadratic terms
 can
be treated similarly� We are left with only one geographic point in the problem� de�ned by the
parameters �� and ��� plus� for each leg j� three motion parameters� #�j � #�j � and $�j � We can
then form a conditional equation� similar to equation 	�
 in the main text� but with these eleven
parameters as unknowns� A least�squares solution would then be completely straightforward�

This seems to be a simpler approach to the problem� but there are prices to be paid� First�
the motion parameters for each leg j�that is� #�j � #�j � and $�j�are somewhat abstract and would
have to be transformed to quantities such as course or speed that would be useful to the navigator�
Second� there are now three motion parameters to solve for per leg instead of two� requiring more
observations for a reliable solution� Third� the polynomial representation of each leg�s track is
simply a Taylor expansion of more exact formulas 	here� for rhumb lines
 and extra terms might
be required for long legs� depending on the accuracy requirements� Every extra term adds another
free parameter to the problem� and the requirement for more observations� The algorithm presented
in the main text of this paper and Appendix A is thus more economical in its use of the available
observations� a critical consideration�

�



